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SUMMARY

Equilibrium temperatures and heat-transfer rates for 0.00015- and
0.00030-inch diameter tungsten wires normsl to the flow were determined
throughout the Mach number range 0.5 to 2.5 with Reynolds number varying
between the limits 18 and 1kk. 'This test range corresponds to hot-wire
operation with Knudsen number varylng from 0.12 to 0.005 where Knudsen
nurbers of 0.01 and 2 define the limits of continuum and fully established
free-molecule flow, respectively.

For the range of varisbles of the present tests, equilibrium temper-
ature of the hot wire is characterized by constant recovery factor for
subsonic Mach numbers but constant equilibrium to total tempersture ratio
for supersonic Mach numbers. At constant overheat ratio, the Nusselt
number was found to depend on both the Mach number and Reynolds number.
In the transonic Mach number range, the Nusselt number was found to depend
primarily on the Knudsen number. Measurements to appraise the effects of
operating at variable temperature potential revealed that the degree of
nonlinearity between heat-transfer rate and wire temperature potential is
determined jolntly by the Reynolds number and Mach number. For a given
Reynolds nunber, the effect is most pronounced at Mach number 1.

INTRODUCEION

The measurement of fluctuating and mean flow properties in high-speed
gases by hot-wire techniques requires a knowledge of all quantities affect-
ing the heat-transfer rate. For constant wire temperature, early investi-
gators established the Reynolds and Prandtl numbers as governing parameters
at very low subsonic speeds. Similar measurements of the heat-transfer
rate at transonic and supersonic speeds (e.g., refs. 1, 2, 3, and 4) have
established the reduction in the heat-transfer rate due to compressibility
effects. Although theoretical snalyses of heat-transfer rates in com-
pressible flows Indicate certain trends found by tests, the magnitudes are,
unfortunately, not 1ln agreement. Without complete theoretical knowledge,
it has therefore beeh necessary to estegblish empirical correlations of the



2 : - NACA TN 3965

heat~transfer rate for hot wires in order to interpret the hot-wire out-
puts. For successful application, such correlations or wire calibrations
must include all pertinent vdariables.

Low subsonic Mach nunber tests at various wire temperatures (e.g.
refs. 5 and 6) established that a nonlinear relation exists between the
heat-transfer rate and the temperature potentiel of the wire. Hllpert
(ref. 6), for example, found a 6-percent departure from & linear variation
in the heat-transfer rate for wire temperatures of 1000° F compared to
the rate found for s wire temperature of 200° F. At high speeds, however,
an opposite nonlinear trend has been cbserved. Kovasznay and Tormarck
(ref. 1), for example, obtained measurements in the range of Mach numbers
from 1.1 to 2.0 which indicate a departure of minus 55 percent under the
same wire temperature conditions as Hilpert's. Because relatively few
calibrations have been made in the Mach number region lying between the
low subsonic tests of Hilpert (M = 0.06) and the supersonlic tests of
Kovasznay (M < 2), and because the available calibraticns (refs, 1, 2,
and 3) exhibit discrepancies between one another that cannot be accounted
for by known experimental error, the effect of Mach number on the temper-
ature nonlinearity 1s not well defined. Furthermore, because a hot-wire
survey in, for example, a high-speed boundary layer encounters a wide
variation in Mach pumber, 1t is evident that there exists a need for data
showing the effect of Mach number on nonlinear heat-transfer trends.

The principal purpose of this report is to present an snalysis of
heat-loss data from hot wires operating throughout the Mach numbers 0.3
to 2.5 with the intent to reveal the effect of Mach nunber on the temper-
ature nonlinearities. A portion of the data which are snalyzed has been
published previously (ref. 7). These data and additional data gathered
subsequently form the basls for this study. The data are analyzed in
three stages. The effect of Mach number and Reynolds number 1s determined
upon (1) the equilibrium wire temperature, (2) heat-transfer rate at con~
stent tempersture potential, and (3) temperature loading nonlinearities.
This division comstitutes the plan of the report.

SYMBOLS
&y meen overheat ratio, Eiigjii dimensionless
e
c free-stream speed of sound, ft/sec
D wire diemeter, ft
Cp specific heat at constant pressure, Btu/lb °F
h convection heat-transfer coefficient, Btu/sec £t2 °F

g gravitational force per unit mass, 32.2 £t/sec®
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H
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wire current, amp
thermal equivalent of electrical energy, 9.48x107% Btu/w sec
thermal conductivity of wire material, Btu/sec £t °F
thermal conductivity of gas, Btu/sec £t °F
wire length, ft
Mach number, % , dimensionless
Knudsen number, /ZE M
2 Ny

Nusselt nunwber, oD

ke

Prandtl number, gp

k
Reynolds number, EEP
overheat ratio function, Eh_
+ 8y

recovery factor

wire resistance, chms

dimensionless grouping that characterizes the end-loss correction,
2 [2 o=
1N ke Ny

temperature potential, T4y - Te, Op

absolute temperature, °rR

free-stream velocity, ft/sec

convection heat transfer

end-loss correction, electrical input

first- ard second-order coefficients of resistivity, °F © and OF =,

respectively, R = Re (1 + apt + Bst®)

ratio of specific heats, 1.40 for air
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approximate rate of increase of end-lossg correctlion with overheat
ratio over the range 0 < &; < 1, -é?- evaluated under
the assumption that B =E =0

nonlinear overheat ratio coefficient, h = ho(1l - &&y)

free-stream viscosity, 1b sec/ft2

free-stream density, slugs/cu ft

temperature ccefflcient of wire thermal conductivity,

°F™, K = Ke(1 - ot)
Subscripts

calculated value
equilibrium

value at 492° R
zero overheat ratio
reference condition
stagnatlion state

wire
Superscripts

spanwise average value

limiting case for indefinitely long wire
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EXPERTMENTAT. EQUIPMENT

Wind Tunnels

The date were collected in the Ames 2~ by 2~-foot transonic wind tunnel
and the Ames 1- by 3-foot supersoric wind tunnel no. 1. These facilities
are closed-circuit, continuous-operation, varisble-pressure types, and use
dry, filtered air as the working fluid. The 2- by 2-foot wind tunnel was
operated through the Mach mumber range 0.5 to 1.4 at nominal values of
Reynolds number per foot of 2.25, )-I-.O, and 5.75 million. Data were
obtained from the 1- by 3-foot wind tummel in the Mach mumber range from
1.4 to 2.5 and subsonic measurements between Mach numbers 0.4 and 0.8
were also made in this facility. The Reynolds number range was sub-
stantially the same as that covered in the 2- by 2-fcot wind tunnel. The
hot wires were located on the center lines of the wind tunnels at a fixed
longitudinal positlion in each of the test sections.

Hot-Wire Equlpment

Heat-loss data were obtained using a constant current hot-wire
anemometer developed by the Ames Wind Tunnel Instrument Reseasrch Branch.
A view of the equipment 1s shown in figure 1 along with a basic diagram
of the direct-current measuring circuit. Direct current for heating the
wire is obtained from a full-wave rectifier. The rectifier output is
smoothed by choke filters and is regulated by a series voltage regulator.
As shown in figure 1(b), wire resistance is measured by & conventional
Wheatstone bridge circuit with the wire forming orne leg. ILead resistance
is determined prior to testing and is set on the lead resistance trimmer
so that the resistance decade measures only the wire resistance. The
electronic nmull indicator is essentially a d-c amplifier and galvanometer.
Wire current is cbtained by measuring the voltage drop across the 10-chm
resistor with a potentiometer that is incorporated in the instrument. The
precision of a single measurement is characterized by a relative error
of gbout 1/4 percent.

Hot-Wire Probe

A typical hot-wire probe is shown in figure 2. The probe consists
of two conical-tipped, high-carbon steel needles inbedded ir a lucite
cylinder. Principal dimensions can be obtained from the flgure. Tungsten
wires with nominal diameters either of 0.00015 or of 0.00030 inch are spot-
welded to the cone tips. Resistance-temperature characteristics of the
tungsten wires used in the present tests are given in teble I. The methods
used to determine these properties will be described in a later sechtion.
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The probes were sting-mounted during the tests in the 2~ by 2-foot wind
tunnel; the 20° wedge surfaces of the probe were mounted flush with the
surfaces of & 20° symmetricael wedge spaunning the test section during
the tests in the 1- by 3-foot wind tunnel.

TEST FROCELURE

For each fixed flow condition of Mach mumber and Reynolds nunber,
the following three types of tests were carried out:

1. Determination of the adlabatic resistance of the wire in order
to £find the equilibrium temperature.

2. Measurement of the total heat-transfer rate from the hot wire
at an arbitrary constant overheat ratio.

3. Measurement of the total heat-transfer rate at various additional
overheat ratios to determine the nonlinearity between the heat-transfer
rate and the wire temperature potential.

The flow conditions for these measurements were systematically changed

was varied from 0.5 to 2.5. Operation at Reynolds numbers per foot from
2.25 to 5.75 million resulted in Reynolds mumbers based on wire diasmeter
from 18 to 1k4. The techniques employed for each of the three phases of
hot-wire measurement at a given flow condltion are discussed in the
following paragraphs.

Equilibrium Temperature

BEquilibrium temperatures were cbtained by employing the tungsten wire
as & resistance thermometer, Prior to each constant Reynolds number run,
the adigbatic wire reslstance was determined in an essentislly lncom-
pressible flow (M = 0.07) at atmospheric pressure. This measurement at
the reference condition was repeated before each test so that equilibrium
temperatures could be found from the measured changes in the "cold"
resistances. The cold-wire resistance was determined by extrapolation
of resistances obtalned with very low currents flowing through the wire.
The small currents utilized resulted in resistance corrections to the
zero current value that were of the order of 1 percent. -
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Heat~Transfer Rate at Constant Overheat Ratio

After obtalning the adiabatic resistance, the wire was heated with
an electric current until the mean resistance was increased by 95 percent.
This corresponds to a mean overheat ratio of 0.95. Resistance and current
measurements then gave the total power input to the wire. The inputs were
corrected for heat conduction out of the ends of the wire by the method
of reference 1. A value of 0.95 for overheat ratio was chosen as an upper
1imit in order to avoid exceeding & mean wlre temperature potential of
Loo° ¥, corresponding to the temperature below which oxidation of tungsten
wire is not serious (ref. 2). Wire resistance at a specified reference
temperature gradually increased due to slow oxidastion and to other factors
such as impacts with dust particles which may have caused a permanent set,
and property varlabtlions due to the annealing associated with the repeated
heatings. An assessment of the wire stability was obtained by noting the
drift in the cold resistance meassurements made at the reference conditiom.
These checks, made 1n the 2- by 2-foot transonic wind tunnel only, indi-
cated that g maximum drift of 1 percent could occur over a 12-hour
continuous-run period.

Heat-Transfer Rate at Various Overheat Ratios

Indirect measurements of the nonlinearity that exists between the
heat-transfer rate and the mean temperature potential were obtained by
operating the wire at variocus overheat ratios from 0.25 to 0.95. These
measurements were made at Reynolds numbers based on wire diameter of 26,
52, and 100. The technigque of using current and overheat retio measure-
ments to obitain measures of a nonllinear overheat ratio coefficient is
subsequently developed in the section on data reduction.

DATA REDUCTTION
Equilibrium Wire Temperature
Equilibrium wire temperatures were calculated from the approximate

linear relation that exists over small temperature Intervals between wire
resistance and temperature:

Re =Rr [1 + ar(Te - Tr)] (1a)
from which
Re - R
Te = Ty + —————=™. (1p)

Ryaye
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The reference temperature of equation (1b) corresponded to the stagnation
temperature that existed when the tunnel was operated at M = 0.07 and
etmospheric pressure.

Equillibrium temperature data for the hot wire were then reduced to
the usuval equilibrium to total temperature ratio Te/Tt. The recovery
factor was then computed from the messurements using the equation:

Te _ 1 - (Te/Tt)

T =
¢ Tt ‘)’—1M2
2

(2)

The recovery factor defined by the equilibrium temperature is useful for
making comparisons between the hot-wire phenomenon and theoretlcal and
experimental results for continuum flow.

Heat-Transfer Rates

With the appllcation of an end-loss correction, the power input to
the hot wire equals the heat transferred to the stream hy forced convection:

212 RyJ = haDl¥ (3)

vhen radiation effects are neglected. Equation (3) forms the basis of
the heat-transfer-rate determination because when the end-loss correction
z, the mean temperature potential f, and the mean power input I®Ry are
known, the dimensionless heat-transfer coefficient, or Nusselt number,
can be formed:

hD _ zI%RyJ

M = i T ket (4)

Two factors on the right-hand side of equatiqn_(h) are not readily meas-
urable and mist be calculated. They are the end-loss correction z and
the mesn temperature potential t. Herein lies a fundamental difficulty
in the use of the hot wire. These corrections (a) can, if inaccurate,
introduce an apparent nonlinearity in the variation of hest-transfer
coefficient with overheat ratio, and (b) are in themselves nonlinear
functions of overheat ratio, as will be shown later.
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The end-loss correction 2z 1s the same as that described in ref-
erence 1, The derivation of the end-loss correction of reference 1
incorporates the assumptions that the wire has no second-order temperature
coefficient of resistivity, that the heat-transfer rate is linear with
temperature potential, and that the wire thermal conductivity is constant.
Generally, these assumptions are not met in practice and departure from
these assumptions can conceivably lead to an epparent nonlinearity between
heat~transfer coefficient and temperature potential. An assessment of
their combined effects upon the end-loss correction has been made and is
shown in figure 3. Figure 3 shows end-loss correctlon 2z as & funchbion
of overheat ratio for different values of the end-loss parameter Sg.

The parameters B/a? and &, respectively, represent departures from =a
"linear" wire and from s flow in which the heat loss is proportional to
the temperature potential. For a given wlre and fixed free-stream condi-
tions, the quantity S 1is a function of the Nusselt nunber only

(So = (D/Z)GJKe7ke)(l/JNNO)). When the Nusselt number at zero overheat

ratio i1s regarded as being determined by the free-stresm conditions only,
the curves at various values of Sp in figure 3 can be interpreted as
end-loss varlation with overheat ratio under fixed flow conditions. TIn
general, the small values of Sy are associated with high Reynolds number,
low Mach number flows, The analysis for end-loss correction 2z shows
that any temperature nonlinearities assoclated with the resistivity of

the wire and the heat-transfer rate affect the value of 2z most for large
values of Sp. Therefore, the end-loss correction was calculated (by
mechanical integration of the resulting nonlinear differential equation)
for two nonlinear cases using a relatively large value of So (0.15).

It should be noted that Sy is usually less than 0.15 for practical hot-
wire applications. A single calculation was made to determine the effect
of varistion of wire thermal conductivity along the length of the wire
upon the end-loss correction. The result of this calculation (fig. 3) is
essentially the same as the result for B/a2 = & = 0,10, From this it is
concluded that, although the temperature distribution is changed due to
the additional nonlinearity introduced by the wire thermsl conductivity
variation, the end loss is unaffected. Qualitatively, this result is —
expected because the end loss is primarily dependent on the slope of the
temperature distribution at the ends of the wire., Near the ends of the
wire the temperature distribution mist of necessity approach the linear
one because the ends of the wire are at equilibrium temperature. Inspec-
tion of figure 3 shows that the linear correction yields values for =z
that differ at most by 1/2 percent from the nonlinear solutions which
represent closer approximations to actual cases. For end-loss factors (z)
gbove 0.85, the linear spproximation thus appears adequate up tc overheat
ratios of 1.

An additional useful characteristic of the end-loss correction shown
in fPigure 3 is that for overheat ratios less than 1 the variation of =z
with overheat ratio for fixed free-stream conditions 1s approximastely
linear: .

z =2o(1l + Kk&y) : (5)
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The slope over the overheat ratio range from O to 1 can be approximated
by k = O0z/day evaluated at an overheat ratio of 0,50 for the linear
case. A good spproximastion for the factor &k 1s the result:

R «

So : (6)

=

In equation (h), the other quantity which can lead to an apparent
temperature nonlinearity if inaccurately determined is the mean temper-
ature potential, t. The mean temperature potential is determined from
the mean wire resistance and its temperature coefficients of resistivity.
Over a wide temperature range, the resistance and temperature potential
Ffor a wire of infinite length are well represented by & second-degree
equation:

Ry = Re(l + aet + Bet?) ' (1)

where ae and Be are the first- and second-order coefficients of resis-
tivity evaluated at the equilibrium temperature. With uniform flow con-
ditions existing along the wire span and with the ends assumed at equl-

1librium temperature, the mean temperature potential has been calculated

approximetely and is given in terms of the overheat ratio (Appendix A) as:

- & _\~1
FEIT S (8)

The Nusselt number calculations (eq. (4)) were carried out from the power
measurements where the end-loss corrections were found from equation (5)
and the mean wire temperatures were glven by equation (8).

Dependence of Heabt-Transfer Rate on Overheat Ratlo

One can evaluate the variation of the heat-transfer rate with over-
heat ratio, or temperature potential, by defining the convection heat-
transfer coefficient as follows:

h = ho(l - &aw) (9)

Then, for the general case in which the wilre is operated at various over-
heat ratios under fixed flow conditions, equation (3) can be written
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) G_g_) _ (1 sm) 1+ (Be/ae®)Emy] (10)

ZoReaveJ - EEW

The group of constants before the term T/I® represents the limit IZ/F
for zero overheat ratio. It is anticipated that k, Be/xe®, and £ will
be small compared to unity. For this case and for overheat ratios below
1, the right-hand slde of equation (10) can be approximated more simply
by performing the indicated operatione and neglecting cross products:

_—-5/12 = K E. a.
Gy, e raEr ()

For typical values of «k, Be/ccea, and & subsequently found, the approxi-
mate form of equation (11) agrees to within 1 percent with the exact
expression of equation (10)., Equation (ll), therefore, supplies & simple
means for indirectly measuring the nonlinear coefficient §& in terms of
current and overheat ratioc for fixed flow conditions. The value of ¢

is determined from the slope of the straight-line variation predicted by
equation (11) when the values of k and Be/ae® are known.

Accuracy of Measurements

Flow messurements.~ Mach nurber in the 2~ by 2-foot wind tunnel was
obtained from a Mach meter which was calibrated to #0.005 of indilcated
Mach number., Total temperature was measured on the center line of the
tunnel in the setiling chamber with an iron-constantan thermocouple to an
accuracy of :l:l/ho F. Total pressure was measured in the sebttling chanber
by a mercury nenometer with an uncertainty in the reading of #0.05 inch
of mercury. These uncertalntlies associated with the flow measurements also
apply to corresponding data obtained from the 1- by 3-foot wind tumnel.

Heat -transfer measurements,- The power dissipated by the hot wire was
measured with an uncertainty of 3/L4 percent. In forming the dimensionless
Nusselt number from the power measurements, it is necessary to estimate
the mean wire temperature from the resistance measurement. This requires
that the temperature coefficients of resistivity for the wlres be known.
The first-order temperature coefficient, a, for the wires was determined
from resistance measurements made in a very low-speed flow for which the
air temperature varlied over the range 60° to 110° F, An upper 1limit of
the uncertainty of the first-order temperature coefficient of resistivity
by this method is about 5 percent. The second-order temperature coef-
ficlent of resistlviity was not directly determined for any of the test
wires, For wire No. 2, however, the quotient B/a? was measured by
operating the wire in & high vacuum to obtain measures of the quantity
Ra/1 as 2 function of overheat ratio. The value of the straight-line
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slope obtained from this meassurement can be shown to be the quantity B/cx,2
(Appendix B). TFor wire No. 2, the value 0.137 was obtalned from the
vacuum measurements and agrees well with the value 0,138 found for a
2-inch sample from the same spool by independent resistance-temperature
measurements (sample sealed in nitrogen-filled pyrex tube and heated in
electric furnace, see table I). It was assumed that B/a? for the 2-inch
samples was representative for all of the ftest wires from the same spool.

To summarize the uncertainties associated with the quantities reported
here, an error analysis has been made in which all uncertainties associated
with the primary messurements are assumed to be additive. The result is:

Uncertainty,

Quantity percent

Ny 6

Te 1/2

Ty, 1/10
_ M 1
Ty - Te 5

Ny 8

£ 20

RESULTS AWD DISCUSSION

The data discussed in the following paragraphs have been anslyzed on
the bagis of a Reynolds number defined by the free-stream condition and
by a Nusselt number based on equllibrium temperature., In order to facili-
tate change to other bases, the data have been summarized in table II,

Equilibrium Temperature Tests

In the unheated state, the wire assumes a temperature between the
free-stream and the total temperature of the stream. This temperature
is called the wire equilibrium temperature and is analogous to the recovery
temperature for boundary-layer flows., A recovery factor can be calculated
for each measurement of equilibrium temperature with the wire by using
equation (2), In vhat follows, the egullibrium temperature and the cor-
responding recovery factor are discussed in conjunction, Attention is
directed first to measurements in the subsonic range.

The characteristics of equilibrium tempersture and the corresponding
recovery factor are shown in Pigure 4(a). Equilibrium to total temperature
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ratio, hereafter called simply equilibrium temperature ratio, for two
Reynolds numbers is plotted as a function of the Mach number, The dashed
curve represents the trend of the corresponding recovery factors. No
significant variation in the equilibrium temperature ratio with Reynolds
number was found for the Reynolds numbers of the present tests. Thus the
Mach number determines the equilibrivm tempersture ratio for thils Reynolds
number range. The variation of equilibrium temperature ratio with Mach
number changes sbruptly at a Mach nunber slightly below 1 (about M = 0.9).
In the subsonic range below a Mach number of 0.9, the equilibrium temper-
ature falls below the recovery temperature for the laminar boundary layer,
which is characterized by constent recovery factor of -fﬁ; = 0,836. How-
ever, the trend of the measurements suggests that the recovery factor for
the wire is itself constant in this region., Up to M = 0.9, the recovery
factor was found to be within 2-1/2 percent of the value 0.T8.

For Mach npumbers greater than 0.9, the equilibrium wire temperature
ratio is Indicated to be constant at a value of approximately 0.97., The
two points at s Mach number of 3 are taken from reference 8. The cor-
responding calculated recovery factor incresses with Mach number and
approaches the asymptotic value of 0.97. This is due to the relation that
exists between recovery factor and the equilibrium temperature ratio

(eq. (2)).

The equilibrium temperature dats from two constant Reynolds number
runs of the present test are compared with the resultes of Stalder, Goodwin,
end Cresger (ref. 4) in figure 4(b). The data are plotted against the
Knudsen nmumber, The dashed horizontal line at re = 0.97 corresponds to
the 1limit in recovery factor lmposed by virtue of a constant supersonic
value for equllibrium tempersture ratio. The departure from the subsonic
value (re = 0.78) occurs near Mach number 1. The actual departure polnt
depends upon the Reynolds mumber, For increasing Reynolds numbers this
point moves to lower values of Kmudsen number. The measured points from
the present test are for Reynolds numbers 28 and 56, For Mach numbers
above 1.9 (solid points) the measurements of the present test agree well
with those data of reference L which were obtained at Mach munbers between
1.9 and 3.2 and which lie in the same Knudsen number range. For high Mach
numbers (M > 2, say) in any series of constant Reynolds number runs, the
asymptotic approaches to the limit re = 0.97 form a locus of points which
gives, essentiglly, independence of recovery factor with Reynolds number
in this range of Knudsen munber. This is the result noted in reference L.
At Knudsen numbers greater than 0.2, however, the recovery factor measure-
ments of reference 4 indicate that free-molecule-flow effects cause the
recovery factor to incresse.

Beat-Transfer Tests

In the presentation of heat-loss dats there exists the problem of
selecting (1) the control parameters and (2) the basis for evaluation of
the state properties that determine the parameters. As noted previously,
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the heat loes from hot wires is a function of the Prandtl, Reynolds, and
Msch number as well as the operating temperature of the wire, The Prandtl
number for air is essentially constant over wide temperature ranges; and
for this remson, it has not been considered as a parameter for presemtation
of these data. Various bases for computation of the Reynolds number have
been suggested (refs. 1, 2, 3, and k), Generally, proposed bases for
defining the state functions are chosen in such a way as to reduce Mach
number and temperature loading effects upon the heat-transfer rate, The
Reynolds number basis chosen in this report is the same state used to
define the Mach number - namely, the free-stream state. The Nusselt nuuwber,
on the other hand, is based on thermal conductivity evaluated at equi-
librium wire tempersture. These choices were made because 1t simplifies
the present study of temperature loading effects on the hegt-transfer rate.

Constant overheat ratio.- The variation of Nusselt number with Mach
nunber is shown In figure 5 for various values of free-stream Reynolds
number, The measurements correspond to a constant overheat ratio of 0.95.
For thies condition the mean temperature potential of the wire above equi-
1ibrium temperature i1s constant and corresponds to approximately 100° F,
The dashed portion of the curves extending to low subsonic Mach nurmbers
are extrapolations of the date to the widely used heat-loss correlation
for cylinders in crossflow of reference 9 which is for incompressible flow
(M < 0.06). An ebrupt change in the heat-tramsfer rate occurs at Mach _
muwber 1, The héat-transfer rate continues to decrease with increasing
Mach number; however, the rate of decrease with Mach number is much more
gradual then for subsonic Mach mumbers, This behavior is conslstent with
the well=known fact that the flow over blunt bodies tends to approach a
fixed pattern as the free-stream Mach number is increased.

The varistion of Nusselt nunber with Reynolds number is shown in fig-
ure 6. At constant Mach number, a linear relation holds between Nusselt
nunber and the square root of the free-stream Reynolde number for the range
of the present tests. Also shown in the figure are results from refer-
ences 4 and 10 (at nearly the same temperature potemtial) which give
Nusselt number as a function of Reynolds number for very low Reynolds
numbers in the slip-flow and continuum renge, respectively. The gradual
decrease in slope of the constant Mach number curves in figure 6 as Mach
number is increased ere consistent with the results of reference 4. It
should be noted that linear extrapolations of the slopes of the present
test to Reynolds nunbers less than 16 are unwarranted because of the non-
linear relation between Nusselt number and the squere root of Reynolds
number which is especilally pronounced at higher Mach numbers, .

Shown also in figure 6 is the heat-transfer correlation for cylinders
in incompressible flow recommended in reference 9 when allowance is made
for the temperature dependence of the hest-losgs rate.t Calibration of a

TEquation (4c) of reference 9 is based upon average film temperature.
When the correlation is expressed 1n terms of equilibrium and free-stresm
state (essentially stagnation state for low Mach punbers ), the temperatur=
dependency for an overheet ratio of 1 modifies the constents to the values:
Ny = 0.45 + 0,51 BgC-54,
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0.00015-inch wire in a low-speed subsonic channel (0.02 < M < 0.05) at a
constant overheat ratio of 1 agreed with this curve over the range tested.
Measurements made at the reference point (M = 0,07) for the transonic tests
sgreed well both with the low-speed calibration data and the recommended
equation of reference 9; thus, the wire reference measurement serves to
establish the relative difference between incompressible correlations and
the correlations at constant Mach number in the transonic and supersonic
range.

The variation of Nusselt number wilith Reynolds number at constant
values of Mach number shown in figure 6 agrees qualitatively with the
prediction of the approximate slip-flow theory presented in reference 11.
However, the theory of reference 11 predicts a considerably smaller Mach
pumber effect than 1s shown in figure 6. This is probably due, in part,
as stated in reference 12, to the restrictive assumption of reference 11
that the dissipation tewmm in the energy equation is negligible, In view
of the qualitative agreement wlth reference 11, some of the data of the
present tests were plotted as a function of the Knudsen nmuwber, the dimen-
sionless number that specifies the degree of rarefaction of a gas for a
given body. The result for the transonic Mach pnumber range, consisting
of the data from the 2- by 2-foot wind tumnel (wires 1 and 2), is shown
in figure 7. For the transonic range (0.5 < M < 1,3), the data correlate
fairly well sbout a single curve., For the constant Reynolds number runs
shown in figure 7, note that the Mach number increases with Knudsen number
(M ~ Ny for Np fixed). Thus, the highest Knudsen number point in a
given Reynclds number sequence represents a Mach number of 1.3. A Mach
mumber effect can be detected; however, the effect is small and the gross
correlation is the significant one. The Mach number effect can be reduced
by incorporation of the Prandtl number based on free-stream temperature
(that is , using M/NRNP as correlating parameter). The significance of
the correlation In flgure 7 is that in the transonic range the hot wire
is sensitive primerily to changes in denslity since Knudsen number is
inversely proportional to the density. The insensitivity to velocity
change at Mach numbers near 1 was noted in reference 3. For Mach numbers
outside the range 0.5 < M < 1.3, the correlation against Knudsen number
does not gpply.

Variable overheat ratio.- At constant overheat raetio, the previous
results have shown that the Nusselt number can be uniquely defined in
terms of the Mach nunmber and the Reynolds number. However, as indicated
previously, Nusselt number is not independent of wire temperature as char-
acterized by the overheat ratio. Therefore, a series of tests at various
overheat ratios were analyzed to determine the nonlinear heat-transfer-rate
effects, Heat-transfer data for thls analysis were obtained at a number
of overheat ratlios in a series of flows having fixed free-stream Reynolds
nunber and Mach pumber.

Figure 8 shows the nonlinear overheat ratio coefficient as s function
of Mach number at constant Reynolds number. The nonlinear overheat ratio
coefficient was found by the method indicated in the discussion of equa-
tion (11). Although not many measurements were made at low subsonic Mach
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numbers, the indications are thet the coefficient does change sign in this
speed range - which agrees with the results of references 3 and 6.
Hilpert's data indicete a 6-percent increase in the heat-transfer rate for
very low Mach numbers and a Reynolds number of 180; and Spangenberg's data
exhibit a reversal in the coefficient at particular Mach numbers, As Mach
nunmber Ilncreases, the coefficient increases, approaching s maximum value
as Mach number approaches 1. In terms of the Nusselt nunber for the

Ng = 28 condition and an overheat ratio of 1, the value of the nonlinear.
overheat ratio coefficient causes a decresse in Nusselt number relative
to very lcw overheat ratio values by sbout 1l percent. For supersonic
Mach numbers, the coefficient decreases with inereasing Mach number at a
gradual rate so that over a comnsiderable range the magnitude changes by
small amounts. It should be noted that the measurements of reference 1
give a nonlinear overheat ratio coefficient of 0,16 * 0.03 in the super-
scnic range 1.12. < M < 1.84% but show no systematic variation with Mach
number or Reynolds number.

Variable overheat ratio measurements at nominal Reynolds numbers of
52 and 100 were made In the 1- by 3-foot wind tumnel, Alsc a subsonic
check measurement was made at Reynolds number 28 to cbtain results corre-
sponding to the measurements made previously in the 2- by 2-foot wind
tunnel. These data are also included in figure 8. Results from the two
facilities show that for subsonic Mach mumber, the crossover Mach number
increases with lncreasing Reynclds numbers, Qualltatively, the measure-
ments of reference 3 exhibit this behavior, too, although the apparent
crossover Mach numbers are lower. (This is probably due to uncertasinties
in the magnitude of the first- and second-order temperature coefficients
of resistivity, because a small error in these guantities raises or lowers
the curves which affects the crossover point considerably.) Trends in the
data for supersonic Mach nmunbers show that the nonlinear overheat ratioe
coefficient decreases with increasing Reynolds number. No measurements
in the supersonic range resulted in negative values for ¢E _(i.e., Nusselt
nunber increasing with overheat ratic). Above Mach number 2.5, the N
nonlinear overheat ratio coefficient appears to approach zero as an
asyaptote.

The nonlinearity of heat loss with temperature cennot be explained
by the dependence between thermal conductivity and temperature (k ~ T
approximately), because the local heat-transfer coefficient is directly
proportional to the thermal conductivity of alr. This proportionelity
should cause the heat-~transfer coefficlient to lncrease with wire temper-
ature - 1f it were the only effect acting. Measurements of the nonlinear
overheat ratio coefficient In the transonic range, however, show that, in
genersl, the heat-transfer coefficient decreases with overheat ratio.
The foregoing results indicate that a complete theory for heat transfer
mist account for observed departures from linearity between heat-transfer
rate and temperature that are especlslly important in the transonic Mach
number range,
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CORCLUSIONS

Results of equilibrium to total temperabure and heat-transfer rate
measurements for hot wires operating at transonic and supersonic speeds
can be summarized by the following conclusions:

1, Up to a Mach number of 0,9, the eguilibrium to total temperature
ratio is characterized by a constant recovery factor of approximately 0,78,

2. TYor supersonic Mach numbers, the equilibrium to total temperature
retlio maintaing a constant value of 0.97 up to a Knudsen number of sbout

0.15.

3. For constant temperabture potential, the Nusselt number is a func-’
tion of the Reynolds number and Mach number only. In the transonic Mach
number range, the dependency on Mach number and Reynolds number 1s such
that the heat-loss characteristic depends primasrily on the Kmudsen nunmber,
indicating that the heat~loss characteristics are dependent primarily on
the free-stream density in this range.

i, Measurements of the nonlinear overheat ratio (or temperature

" potential) coefficient exhibit Reynolds number and Mach number dependen-
cles. For low subsonic Mach number, the nonlinearity causes the Nusselt
number to increase with overheat ratio. At a subsonic Mach number (cross-
over Mach number), the effect changes sign so that Nusselt number decreases
with overheat ratioc, The crosscover Mach munber increases with Reynolds
nunber, The maximm nonlinear effect occurs at Mach number 1 for £ixed
Reynolds number. Increasing Reynolds number decreases the nonlinear effect
in the supersonic range.

Ames Aeronsutical Laboratory
Natlonal Advisory Committee for Aeronautics
Moffett Field, Calif., Feb, 1, 1957
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APPENDTX A

MEAN WIRE TEMPERATURE IN TERMS OF OVERHEAT RATIO AND THE FIRST- AND

SECOND-ORDER TEMPERATURE COEFFICIENTS OF RESISTIVITY

Wire reeistance is defined in terms of the first- and second-order
temperature coefficients as :

Rw = Re(l + aet + Bet2) (A1)

The tempersture distribution along a wire of variable thermal conductivity
with nonlinearities in the heat-transfer rate and in the resistance-
temperature variation (l.e., £ # O and Be # O) can be approximated by the
temperature distribution for the simple linear case:

cosh oX -
£ =t*[1 - ——18" | for which T = t*(L - S' tamh 1/s') (A2)
cosh
Sl

where 8'  represents an altered value of the parameter S8 to account

for nonlinesrities. By proper selection of the term 8', which is depend-
ent mainly on wire current and overheat ratio, equation (A2) can be made
to approximate the nonlinear cases. The following discussion indicates
that the selection of S' 1is not critical. The average resistance of

the hot wire 1s obtained by integrating over the wire length:

/2 2% 2x\2
_— o N cosh 751 > cosh 787
Rw = Re 7 1+ aet* {1 - — 1 + Pet*” |1 - ———F— dax
A cosh g cosh 1
(43)

Completion of the indicated inftegration gives

2

Bw _ 14 a,e'b*<l - S'tenh i,) + Bet*® <1 - S'tanh &) +
Re 5 5

Ll ar 1. 1 2_1_ 1
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For hot-wire work, it can be shown that l/S' > 6 usually; typical values
- for S' are of the order 0.10, Under this condition:

la-
tanh = % 1 b
.——L_f<<l
Stcosh® — > (A5)
SI
1 - 28" & (B/t%)%
o
Use of the previous approximetions gives for overheat ratio
- R - —2
B = 2 - 1 = aet + Be(l - )%
Re 2
or ? (A6)
= _ Be _S8' V1 IT

The last equation shows that the first-order temperature coefficient of
resistivity is modified by the term in the brackets when the wire operates
over wide temperature potentials., In anticipation of the final result,
the temperature potential that sppears inside the bracket can be replaced

by (F/ce)l + (Be/ae®)E,] to obtain

1
1l +=29" _
B = ce|l + = 2 — &t (AT)
Ce l+——2'a"w ‘
Qg

The terms (1 + S'/2) and [1 + (Be/ae®)dw] tend to cancel each other over
the operating range of overheat ratios up to 1 for Be > 0, which is the
case for tungsten. Thus, equation (A7) shows that the parameter S plays
a minor role in the determination of overheat ratio. Therefore, the
temperature potential and overheat ratio are related to good spproximation

by

) B = a1t a-'-’fz-a-w)f (48)
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APPENDIX B
MEASUREMENT OF B/o® BY OPERATING WIRES UNDER HIGH VACUUM

Anglysis of the heat loss from a hot wire when the entire input is
conducted along the wire length to a heat sink at the end supports glves
the mean overheat ratio in terms of wire constants and wire current as

T =_tan m_ oy (Bl)

SVHOE =2

Solving equation (BE) for ae 1in terms of wlre properties and current

gives
-3 @@ =2

The quantlty within the brackets is fixed for a given sink temperature,
Te. The quotient (m/I)® (eq. (B2)) 1s determined for each overheat ratio
with the aild of equation (Bl). Note that, 1f the second-order temperature
coefficient of resistivity were_zero, (m/I)2 would be constant. Thus, a
variation of the quotient (m/I)2 with overheat ratio produces a measure

of the quantity B/ma. This last statement follows as a consequence of
the result shown in Appendix A (eq, (A8)), namely, that the effect of a
second-order temperature coefficlent is glven to good epproximation by
modification of the first-order term by the quentity [1 + (B/a®)&;]. The
result was found for a hyperbolic cosline temperature distribution, end also
applies for the cosine temperature distributlion found for the wire that 1s
heated in a vacuum. Thus, one can write eguation (B3) as

s [EEON

When equation (B4) is normelized with respect to the value of the quo-
tient (m/I)2 for zero overheat ratio, the result is

_ (&

l+—B§aw=
a (11)2
IO

where

ma

(B5)
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TABIE TI.- WIRE PROPERTIES

D)
wre  Lu/p| Pl og | P | Bg/a?
2-in. sample| --- | 0.00015 | 0.00222 {4.88x10°7 | 0.099
2~in. sample| --- | .00030| .00209 |6.05x107 | .138
1 76 | .00015 ] .00254 - -—-
2 356 | .00030 | .00261 — .137
3 340 | ,00030 | .0026 - -
L 367 | .00030 | .0026 - —-
5 712 | .00015| .00239 —— —

To convert to reference temperature base:

ar .
L+ OL:E'(Tr - Tp)

Qe

T1l4 ap(Ty ~ Tp)

Br



TABIE IT,- TABULATION OF DATA

(EP -y ERER WL SRV}

(a) Heat-loss data at constemt overhest ratio

Wi Wire =
ol M | M| m |mefr | B oI pl.gﬁl:;{ “ S R B B EV - P ™ Pﬁélg%
1 0.07[ 527 1 0 0 2 58.7]0.95| 5bg | 0.974| 0,550 | 0.139 o
18% .50 53]5. LoB85 | 950 O-ﬁg N 55-% i-;).g ;ﬂg % %
e :52 ;L:a :ﬁ 10650 ?E:g 1.20| s49] .967 119
19.6] .95]| 51| .969 0652 56.5 | 1.30| 551| .969 .118
19.1] 1.02| 552 | 966 L0615 57.2 | 1.hof 554 | .068 15
18.31 1,10} 352 | .970 10810 LL.6| 07| 540} 1 -059
20.5 1::;9{ 70 ;_:970 oV .0616 1}; | lg;:ﬁ :sgag gﬁ .grg 258
28.0| .50|536 | oo | .om0| .125 98.6 | 1.00! 35| .o73 1186
28.6] .70| 538 | .985 10 98.8 | 1,10} 554 | .976 179
28.4| .90 Bu3| .92 L0912 98.9 | L.20! 556 ggg i;g{
2”. .nn nI.E .969 .{\636 99.5 1.30 . .
28'.3 1.33 57 | 069 .0822 98,9 | 1.ko) 566§ .968 v A7k ""k
el 2| 2 o600 we | ol 3 el ol ems | Y
R AN U R
e P P 1/5 1k 95| %8| am 242
kg, 9| .%01{ 535 .gg:" 950 ﬂg ﬂg, Ji.gg ;gg % ggg
%:i f£ 233 :98;r Tkt w5 | 1.20| 563| .963 228
50.8] 95|55k | .98 .133 1k [ 1.30] 5671 .963 225 v
50.0 | 1.00 | 556 | .971 .16 | [ |1bo| 5761 0| ¥ | .22k
REE AR | ] e [ B | |
22'5 1.30 255 575 22 57 |1.72| 532| .07 .107
191 (Lo |57 | om7| ¢ | 20 \ 102 | 1.74] 3877 .990 155
07| 538 1 0 /2 e |1.95] se3] .om7 .053
7.0| .50|537( .998 | .9%0| .20k 5. (1.95} 335 .960 .092
70.0| 70|54 | 389 J187 v (103 [1.93| sh8| .90 k3
v | 7ok | 00|35 | o8k l 168 Y b 25 [2.k3] 50| .968 -0%0
2 .07] %33 |1 0 0 5 | 2,u5] 528 | 963 .089
56,8 50|54 | 988 | .9%0| .175 l 61 | 2.45] 533 .970 .093 ,
56.3| .T0|543 | .983 l 162 104 |2,b5) 5521 ,990 v | .k \
58.2| .90 548 | .976 .143
R = By - Bp cale Were Ry cale = Rall - oe{Te - Tr))

C96E NI VOVN

e
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(b) Nonlinear heat-loss measurements at various overheat ratios

—_ = fr
ng':.e R M Ty [ gﬁ_ 3
5 25,1]0.30}519] 0.239] 12L.0 ]-0.006
478112500
.960 | 130.0
26.6| .50{524{ .237]128.0 .020
475 132.5
.954 | 140.5
26.6| .70}{53%] .235}140.5 07T
Am| 148.0
L9451 159.5
26,81 .90f545) .232] 162.5 .096
66 170.5
.9321 186.0
27.0f1,01|550]| .2011177.8 .137
o3| 187.0
.923 | 209.0
26.411.10|553] .228)179.5 .129
456 101.8
.916 | 209.0
26.1]|1.29]|559] .225]188.5 L1131
U521 198.2
.906 | 217.0
3 28,0 538 .250| 96.0 .033
500 99.0
.750 | 103.0
50.01 .80}557f .2501 T73.0 | -.008
500 Th.5
.50 T76.8
50.5] 1.351550] .250] 98.5 .087
.500} 103
L7501 107
\ 1.000} 112
L 55.7] L.77]532| .250] 23.5 .082
L5001 24.9
.50 26.3
56.2} 2.03f534]| .250] 25.6 .052
5001 27.2
.T50F 28.5
.980§ 29.5
56 2.50§533| .250¢ 30.0 .025
5001 3.1
.T501 32.7
L9501 3h.1
100 | 1.39|548| .250] 1k.9 .023
500 15.7
.50 16.2
101 | 1.89| 5481 .250( 18.7 .019
5001 19.5
.T50| 20.0
1.000{ 21.2
100 | 2.50]551] .2501 21.0 .003
500 21.7
T30 | 22.7
v 1.000} 23.6




(2

NACA TN 3965

Calibrating
oscillator

6

o | e

* Q!
) ' Q :
- ....\__-..'.\.:_.... .:

Compensating
amplifier

d-c measuring
circurf

I d-c p———
} Potentiometer | oo .
i [ __ 0.1 % 2K Q
I 50 g 0.1%
0.5 %
Indicating ammeter A
0-200 ma Electronic

nult indicator

Wire resistance
{Decade box}

Hot
wire

Lead resistance

l

(b) Basic d-c¢ bridge circuit.

Figure 1l.- Ames hot-wire anemometer.
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Figure 2.- Typical hot-wire probe.
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(a) Variation of equilibrium to total temperature ratio with Mach number.

Figure L,~ Characteristic behavior of the unheated wire for subsonic and supersonic Mach numbers,
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Figure 5.- Variation of Musselt mumber with Mach number for a constant cverheat ratio of 0,95.
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Figure &.- Nonlinear overheat ratio coefflcient measured at constant free-stream Reynolds numbers
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